Binary Numbers 'Pre-Work'

Mini Lesson 1.1

$$
\begin{aligned}
& 10^{0}=1 \\
& 10^{1}=10 \\
& 10^{2}=100 \\
& 10^{3}=1,000 \\
& 10^{4}=10,000
\end{aligned}
$$

Do you see a pattern?

$$
\begin{aligned}
& 2^{0}=1 \\
& 2^{1}=2 \\
& 2^{2}=4 \\
& 2^{3}=8 \\
& 2^{4}=16 \\
& 2^{5}=32
\end{aligned}
$$

Do you see a pattern?
Mini Lesson 1.2

$$
\begin{aligned}
& 2^{2} / 2^{2}=4 / 4=1 \\
& N^{x} / N^{y}=N^{(X-Y)} \\
& 2^{2} / 2^{2}=2^{(2-2)}=2^{(0)}=1 \\
& N^{0}=1
\end{aligned}
$$

Mini Lesson 1.3

11 (Deconstruct 11 number into powers of 2, see Lesson 1.1)

$$
\begin{aligned}
& 11=8+3 \\
& 11=8+2+1 \\
& 11=2^{3}+2^{1}+2^{0}
\end{aligned}
$$

9

$$
\begin{aligned}
& 9=8+1 \\
& 9=8+1 \\
& 9=2^{3}+2^{0}
\end{aligned}
$$

$$
4
$$

$$
4=4
$$

$$
4=2^{2}
$$

$$
5
$$

$$
5=4+1
$$

$$
4=2^{2}+2^{0}
$$

$$
\begin{aligned}
& 1 \\
& 1=2^{0} \\
& 0=0 \quad \text { [Identity] }
\end{aligned}
$$

$$
23
$$

$$
23=16+4+2+1
$$

$$
23=2^{4}+2^{2}+2^{1}+2^{0}
$$

Lesson 1.4

'Counting in a two [2^{x}] (binary) digit world of 1 and 0 '

Since $0=0$
\{zero\} 0 is 0 !
Since 2^{0} is 1
\{one\} 1 is one!
So what is 2^{1} ? What was 10^{1} ? [10!]
\{ two \} 10 Is binary has the value of 2 [since the first 'place value can only be a 0 or a 1 and that was taken by the values 0 and 1, 2 must be expressed in another 'place' using either a 0 or a 1 and since 00 would be 0 then it is expressed as 10!)

So how is the value of three expressed in binary $=2^{1}+2^{0}=$?
$\{3\} 3=2+1$ or $2^{1+} 2^{0}$ or $10+1=11=$ the value for three [3]
$\{4\} 4=2^{2}=100$
$\{5\} 5=4+1$ or $2^{2+} 2^{0}$ or $100+1$ or 101
$\{6\} 6=4+2$ or $2^{2+} 2^{1}$ or $100+10$ or 110
$\{7\} 6=4+2+1$ or $2^{2}+2^{1}+2^{0}$ or $100+10+1$ or 111
$\{8\} 8=2^{3}$ or 1000

