
 Fun with Sorting Page 1 of 25
Developed by IEEE as part of TryEngineering

www.tryengineering.org

Fun with Sorting

Provided by TryEngineering - www.tryengineering.org

L e s s o n F o c u s
The lesson focuses on introducing the fundamental problem of “sorting an array” to pre-
university students.

L e s s o n S y n o p s i s
Fun with Sorting introduces pre-university students to sorting, one of the most basic and
fundamental problems in Computer Science. Rather than study from a textbook or listen
to a lecture, students will discover the algorithms themselves in class, and come up with
ways to sort the numbers themselves. Students are first introduced to smaller versions of
the problem, which form the building blocks of the algorithms they themselves develop
later. The problem is given the form of instructor-moderated in-class demonstrations and
discussions, followed by group exercises and inter-group competitions.

A g e L e v e l s
10-16

O b j e c t i v e s

 Observe how there can be multiple ways of sorting numbers, and how some ways

are more efficient than others.
 Observe how an algorithm is a “procedure” and should not be dependent on the

input.
 Learn that an algorithm must be very explicit in its instructions.

A n t i c i p a t e d L e a r n e r O u t c o m e s
After this lesson, students should have a basic understanding of:

 Iteration
 Sorting, and its building blocks
 Algorithm Complexity

L e s s o n A c t i v i t i e s
Eight objects, each with a hidden number, will form a list that needs to be sorted in
ascending order. The numbers will only be visible to one person called the “controller”.
Everyone else will then give commands to the controller, and attempt to sort the list.
However, the controller can only be asked certain specific questions, like comparing two
objects by their numerical value, and may only obey certain instructions, like moving an
object to a new position or swapping two objects.

 Fun with Sorting Page 2 of 25
Developed by IEEE as part of TryEngineering

www.tryengineering.org

R e s o u r c e s / M a t e r i a l s

 Teacher Resource Documents (attached)
 Student Worksheets (attached)
 Student Resource Sheets (attached)

I n t e r n e t C o n n e c t i o n s

 Sorting Algorithm Animations (http://www.sorting-algorithms.com/)

R e c o m m e n d e d R e a d i n g

 Art of Computer Programming, Volume 3 by Donald E. Knuth (ISBN: 0321751043)

O p t i o n a l W r i t i n g A c t i v i t y
Computers generally tend to spend about a full quarter of their processing power on
sorting different data. As an example, a computer in a hospital may maintain a very large
database of all patients who have ever been to the hospital for treatment in the past 5
years. Different people in the hospital might want different lists of patients. A person
managing hospital finances might want a list of patients ordered by their hospital charges.
A researcher might want a list ordered by the disease for which they were treated. An
administrator might want a list ordered by the doctor who treated the patient. While
generating these lists, the computer will have to sort the data afresh every time according
to the need of the user. Can you think of any other scenario in which sorting is important?
What advantages are there of maintaining sorted data over unsorted data? What are the
possible disadvantages?

http://www.sorting-algorithms.com/

 Fun with Sorting Page 3 of 25
Developed by IEEE as part of TryEngineering

www.tryengineering.org

 Fun with Sorting

F o r T e a c h e r s :
T e a c h e r R e s o u r c e s

 Lesson Goal
The lesson should be discovery-based, rather than lecture or textbook based. The
students will come up with and discover the algorithms for sorting numbers themselves,
rather than being taught conventionally.

 Lesson Objectives
 To introduce students to a fundamental Computer Science problem, and how it

need not involve computers.
 To give students a feel of what “iteration” means.
 To make students realize how there may be multiple ways of sorting, and how

some ways are better than others.
 Observe how an algorithm is a “procedure” and should not be dependent on the

input, e.g. the sorting procedure should work for all lists of numbers.

 Materials
 Cardboard or Chart Paper
 1 Large Marker
 Sticky Tape

 Procedure
The procedure is divided into three sections. The first section contains the general rules of
the game that will be played. The second section contains the different variations of the
game, and in what order should those variations be played. The third section contains
some creative ways to encourage class participation, which is vital to the success of this
lesson plan.

Section I – General Game Rules:

1. Choose 8 objects to represent the list to be sorted. You may pick anything to
represent your list of numbers. Some ideas for the list are:

a. Large playing plastic blocks
b. Large Cardboard cones

2. Pick one person to be the “controller”.
3. Random numbers should be written, or pasted, on the objects in such a way that

they are hidden from the other students, and only the controller should be able to
see them.

4. The students (except the controller) will now attempt to sort the list in ascending
order. To do this, the students can do either of three things:

a. Ask the controller a question. The only allowed question is: “Is this number
larger than that number?” which allows students to compare any two
numbers. The controller may only reply with a yes or a no.

b. Ask the controller to swap any two objects. The controller will then swap the
objects, taking care not to reveal the numbers on them.

c. Ask the controller to move any object to a specific position, i.e. “Move this
object to the third position” or “Move this object in between those two
objects”.

 Fun with Sorting Page 4 of 25
Developed by IEEE as part of TryEngineering

www.tryengineering.org

5. The controller will keep a count of the number of yes/no questions asked. The
students should attempt to sort the numbers while keeping the question count to a
minimum.

6. Once the students feel that the list is sorted, they will ask the controller to reveal
the numbers. If the list is not sorted, then the controller shuffles up the list and
starts over.

Fig. 1 – Game Setup

Section II – Variations:

The following are different variations and flavors of the sorting problem, and should be
taught in the specified sequence. Each exercise should first be carried out as an in-class
game in which the entire class participates, and then students should be split up into
groups of 3, 4 or 5, in which they play the game among themselves (using small cards)
and fill out their worksheets.

1. Single Insertion. Set up the initial list as follows: one of the numbers should be
singled out, and the rest should be pre-arranged in an ascending order. The
singled-out number should then be placed at one end of the sorted part of the list.
Everyone now knows that the entire list is sorted, except for one number at the
end, which is out of place.

Other students

Controller

The list in front of the
students, but the
numbers are hidden,
visible only to the
controller.

 Fun with Sorting Page 5 of 25
Developed by IEEE as part of TryEngineering

www.tryengineering.org

Example:

The students should then play by the rules mentioned in Section I, and attempt to
completely sort the list. This is called Single Insertion, and helps as a basic building
block for other sorting algorithms like Insertion Sort.

If one sees the numbers, it is quite obvious that we can simply place 4 between 3
and 5, and the list would be completely sorted. However, that is not the way
computers work. Therefore, the students must start off with comparing numbers,
and then ordering swaps and/or relocations.

In this case, the students know that the entire list is in ascending order, except for
the last number. This would lead to a realization within the students, rather than
being told directly by the instructor, that they simply need to identify the position in
which to insert the last unordered number.

Solution:
They can do this by asking comparing the last number to each of the numbers in
the sorted list in order, going from left to right (smallest number first). Whenever
they should find that the last number is smaller than the number that they are
comparing it against, they should immediately use rule 4c mentioned in the game
rules, and simply relocate the last number to the position behind the first number
which is greater than it.

1 2 7 8 3 5 4 6

2 7 8 3 5 6

Other students

Controller

1

This

4

That

No!

Is this number larger
than that number?

The entire list is in
ascending order, except
for the last number, 4.

 Fun with Sorting Page 6 of 25
Developed by IEEE as part of TryEngineering

www.tryengineering.org

7 8 3 5 6

Other students

2

This

1

Controller

4

That

No!

Is this number larger
than that number?

2 7 8 5 6

Other students

1 3

This

Controller

4

That

No!

Is this number larger
than that number?

2 7 8 3 5 6

Other students

1

This

Controller

4

That

Yes!

Is this number larger
than that number?

 Fun with Sorting Page 7 of 25
Developed by IEEE as part of TryEngineering

www.tryengineering.org

The above sequence of diagrams shows what should ideally happen in the class.
Note that, throughout the procedure, the students are ignorant of the numbers on
the list, and simply gives a set of instructions by comparing two numbers at every
step.

This is probably the first occasion that the students will be introduced to the
concept of iteration. They need to iterate over all the elements on the left in order
to find the correct placement for the out-of-order element. This is a very useful way
of thinking, and should be constantly referred to while teaching the following
algorithms.

2. Insertion Sort. The list should now be arranged randomly. The students should now
attempt to sort it using their prior knowledge of Single Insertion.

The problem can be broken down into a series of Single Insertions. A lone number
by itself is a sorted list. Hence we can say that the single number on the extreme
left of the randomized list is a sorted list. Now, we consider this 1-element sorted
list, and do an Insertion Sort treating the second element as being the out-of-place
number in Single Insertion. Once done, we now have a 2-element sorted list. The
procedure is then repeated treating the 3rd element as the out-of-place number, so
that we get a 3-element sorted list. We keep on repeating this sequence of Single
Insertions, until we finally get our entire sorted list.

2 7 8 3 5 6

Other students

1

This

Controller

4

That

Okay!

Now place that number
before this number.

2 7 8 3 6

Other students

1 5

This

Controller

4

That

Done!

Okay. I think the list is
now sorted. Show me the

numbers.

 Fun with Sorting Page 8 of 25
Developed by IEEE as part of TryEngineering

www.tryengineering.org

The following sequence of diagrams show what the students should ideally attempt.
Notice how the yellow box, which denotes the sorted portion of the list, grows over
time. Note that Single Insertion is carried out repeatedly using the yellow part of
the list as the sorted list, and the next element on the right as the out-of-place
number. The procedure will eventually sort the whole list!

7 6 8 4 1 2

Other students

3 5

That This

Controller No!

Is this number larger
than that number?

Sorted List

7 6 8 4 1 2

Other students

3 5

That This

Controller Yes!

Is this number larger
than that number?

Sorted List

7 6 8 4 1 2

Other students

3

This

5

That

Controller No!

Is this number larger
than that number?

Sorted List

 Fun with Sorting Page 9 of 25
Developed by IEEE as part of TryEngineering

www.tryengineering.org

7 6 8 4 1 2

Other students

3 5

That This

Controller Okay!

Then put that number
before this number

Sorted List

4 6 8 7 1 2

Other students

3 5

That This

Controller Yes!

Is this number larger
than that number?

Sorted List

4 6 8 7 1 2

Other students

3 5

That This

Controller Okay!

Then put that number
before this number.

Sorted List

 Fun with Sorting Page 10 of 25
Developed by IEEE as part of TryEngineering

www.tryengineering.org

4 6 8 7 1 2

Other students

3 5

That

Controller No!

Is this number larger
than that number?

Sorted List

This

4 6 8 7 1 2

Other students

3 5

That This

Controller Yes!

Is this number larger
than that number?

Sorted List

4 6 8 7 1 2

Other students

3 5

That This

Controller Okay!

Then put that number
before this number

Sorted List

 Fun with Sorting Page 11 of 25
Developed by IEEE as part of TryEngineering

www.tryengineering.org

The instructor should refrain from simply giving out the solution to the students.
Rather, the instructor should encourage students to think out loud, and ask the
students questions so that they may themselves "discover" the algorithm in class.

3. Two-List Merge. Set up the initial list as follows: Divide the 8 objects into 2 lists of
4 objects each, and the two lists should be independently sorted. The lists should
then be placed side by side, and the students should now attempt to “merge” the
two sorted lists into one sorted list by following the rules of the game. This
operation, Two-List Merge, is a useful starting point and building block for a more
sophisticated algorithm: Merge Sort.

This also requires students to recall and reuse their knowledge of Single Insertion.
The list on the left is sorted, so you can treat the 5th number as the out-of-place
number and sort it within the left list. However, there is one bit of cleverness that
the students must discover for themselves. They must take advantage of the fact
that the list on the right is also sorted, so the next number to be inserted is always
greater than the last number inserted. Therefore, when they want to merge the
second element in the right list into the left list, they really do not need to re-run
Single Insertion from the extreme left, but simply start from the point at which they
inserted the last element.

4 6 8 7 1 2

Other students

3 5

That This

Controller No!

Is this number larger
than that number?

Sorted List

Other students

8 2 4 5

That This

Controller Yes!

Is this number larger
than that number?

7 1 3 6

 Fun with Sorting Page 12 of 25
Developed by IEEE as part of TryEngineering

www.tryengineering.org

Note that in the step above, we did not start the questions all over from the start of the
yellow list, which is what we did in Insertion Sort. This is because we know that the next
number to be inserted in the yellow list is already larger than the number inserted last,
since the pink list was already sorted.

Other students

8 2 4 5

That This

Controller Okay!

Then move that number
before this number

7 1 3 6

Other students

That This

Controller No!

Is this number larger
than that number?

8 2 4 5 1 7 3 6

Other students

That This

Controller Yes!

Is this number larger
than that number?

8 2 4 5 1 7 3 6

 Fun with Sorting Page 13 of 25
Developed by IEEE as part of TryEngineering

www.tryengineering.org

Other students

That This

Controller Okay!

Then move that number
before this number.

8 2 4 5 1 7 3 6

Other students

That This

Controller No!

8 2 4 5 1 7 3 6

Is this number larger
than that number?

Other students

That This

Controller No!

8 2 4 5 1 7 3 6

Is this number larger
than that number?

 Fun with Sorting Page 14 of 25
Developed by IEEE as part of TryEngineering

www.tryengineering.org

4. Merge Sort. The list should now be arranged randomly. The students should now

attempt to sort the list using their previous knowledge of Two-List Merge. The main
idea behind Merge Sort is the principle of Divide and Conquer. It is tricky to teach it
to pre-university students, but it is one of the fundamental concepts behind every
modern-day sophisticated sorting algorithm, and so deserves a place in this lesson
plan.

The students will need to consider each number as an individual sorted list of size
1. From there, students will attempt to perform the known Two-List merge on the
lists. However, at first sight, what students will attempt will be not very different
from Insertion Sort. They will first merge two numbers and then a third and then a
fourth, and so on. This is essentially Insertion Sort. A small bit of guidance from the
instructor might be called for. The trick to Merge Sort is the following:

 From the randomized list, treat every number as a sorted list of size 1.
 Then, form pairs of adjacent lists and merge them, so that we now have 4

sorted lists, each of size 2.
 Then, form list pairs again and merge, to get 2 lists, each of size 4.
 One final merge, and we get a complete sorted list of size 8.

This approach ensures that iterations over each individual number are minimized,
so the number of yes/no questions asked is also minimized. It is this distinction
that should be appreciated by the students, and how a small piece of cleverness
can drastically change the performance of an algorithm or procedure.

The instructor should NOT give away the solution to this problem straight away.
This is a problem that, if solved by the students themselves, opens up a whole new
world of possibilities and ways of thinking about a problem, and most importantly,
the benefits of Divide and Conquer, which is not just an important principle in
Computer Science and Algorithm Design, but is applicable in many areas in the
natural sciences (Physics, Chemistry and Biology) as well.

Section III – Tips and Troubleshooting

Throughout the exercises, students should be given every opportunity to come up with
the answers themselves. The purpose of the game is for students to “play around” with
the problem and see for themselves what works and what doesn’t. This form of discovery-
based learning is extremely effective at developing students’ high-level cognitive
reasoning and problem-solving skills. Discussions among students should also be
encouraged

Using the blackboard (or whiteboard) to draw pictures and diagrams can be highly
effective in communicating this particular topic to the students. The graphics provided in
the teacher resources can be used as a guide on how to draw the different steps on the
board. Students can also be encouraged to step up to the board, and draw diagrams
depicting their proposed algorithms and solutions.

 Fun with Sorting Page 15 of 25
Developed by IEEE as part of TryEngineering

www.tryengineering.org

If students are having difficulty getting started, here are some tips on how to get students
on the right track:

 Encourage students to discuss the task at hand. More often than not, students will

inadvertently come up with solutions themselves, when they “think out loud” and
discuss the problem and/or its solution with their peers.

 Jump-start the discussion by asking students about their viewpoints, and
encouraging students with differing viewpoints to engage in active discussions.

 Offer a potential solution and ask students what they think would happen if it were
to be tried. Such a question will most likely trigger a new thought process in the
students’ minds, and help them see where they were getting off track. The question
itself might refer to what the class was already discussing, or it could be an entirely
new, but not necessarily correct thought. The aim is not to provide the correct
answer, but encourage students to evaluate possible solutions and think and reason
for themselves.

Utilize the inter-team competitions effectively. Try and draw a correlation between
the number of questions asked versus the time taken to sort the list, and whether there
was a correlation between winning and asking less questions.

 Time Needed
 Single Insertion and Insertion Sort should be held together in a 90-minute session.

o 10 minutes - Introduction
o 20 minutes - Single Insertion Demo and Discussion
o 20 minutes - Insertion Sort Demo and Discussion
o 40 minutes - Group exercises, worksheets and inter-group sorting races

 Two-List Merge and Merge Sort should be held together in a 90-minute session.
o 10 minutes - Insertion Sort Recap and Review
o 20 minutes - Two-List Merge Demo and Discussion
o 20 minutes - Merge Sort Demo and Discussion
o 40 minutes - Group exercises, worksheets and inter-group sorting races

 Fun with Sorting Page 16 of 25
Developed by IEEE as part of TryEngineering

www.tryengineering.org

 Fun with Sorting

S t u d e n t R e s o u r c e :
G a m e R u l e s

1. There is a list of 8 objects in front of you. Each object has a number on it. Your job
is to sort the entire list in ascending order without knowing what those numbers
actually are.

2. There is a controller who is the only person who can see what the numbers are, and
who can actually move the numbered objects around. It is your job to give the
controller very specific instructions as to how to do it.

3. You can only ask the controller certain types of questions, or give certain types of
commands. There are three things you can do:

a. Compare two numbers. Ask the controller, “Is this number larger than that
number?” and very directly point out the two numbers you want to compare.
The controller is only allowed to answer with a “yes” or “no”.

b. Tell the controller to swap two objects. The controller will then swap the
objects with each other. The controller must be careful not to reveal the
hidden numbers in the process.

c. Tell the controller to directly move an object to a specified position. For
example, “Put this object after that object”. The controller will then follow
your command and move the object to the specified position.

4. If you think the numbers are sorted, tell the controller to reveal all the numbers. If
the list is sorted, congratulations! If not, the controller will mix them up, and you
can start over.

5. The object of the game is to sort the list with the minimum number of yes/no
questions asked.

 Fun with Sorting Page 17 of 25
Developed by IEEE as part of TryEngineering

www.tryengineering.org

 Fun with Sorting

S t u d e n t R e s o u r c e :
S e s s i o n 1 H a n d o u t

 Single Insertion

In this first exercise, the list is sorted already, except for one single number at the very
end. You need to come up with a procedure to insert the out-of-place element into the
pre-sorted list.

It’s really not that hard a problem if you think about it. Remember to follow the rules of
the game very strictly, and SPEAK UP if you’re unsure about what to do. Discuss with your
classmates. Ask your instructor. Remember, this is a think-out-loud session. You’re
playing a game. You don’t play games sitting down quietly. Your instructor will help you
out with this if you are unsure.

Be sure to get understand this problem thoroughly. This is a fundamental “building block”,
so to say, that will be vital in the following exercises, so be sure to get it right.

 Insertion Sort

This problem gets trickier. You now have a list that is completely random, and you need
to sort it.

Stumped? Perhaps the following points will help an idea click:

 A single number by itself is a sorted list. Think about it! It’s a list, that has only one

number in it, and so, by itself, it qualifies as being a “sorted list”.
 You can do Single Insertion on a list of ANY size (the “size” of a list is how many

numbers it has) and ONE out-of-place element, so that you have a complete sorted
list.

 Observe what happened to the size of the sorted list when you did Single Insertion.
How many numbers were sorted before Single Insertion, and how many numbers
were sorted after you carried out that procedure.

 Fun with Sorting Page 18 of 25
Developed by IEEE as part of TryEngineering

www.tryengineering.org

 Fun with Sorting

S t u d e n t R e s o u r c e :
S e s s i o n 2 H a n d o u t

 Two-List Merge

Okay, so now you’re given two separately sorted lists, and your job is to “merge” the two
lists into one complete sorted list. Once again, your knowledge of Single Insertion will
prove key to this task, and you will, along the way, discover a neat little trick, and how
you can make use of the fact that both lists are pre-sorted.

Points to consider:

 A single number is a sorted list on its own (of size 1). Therefore, Single Insertion is

also a kind of Two-List Merge, in which one list had size 7 and the other list had
size 1.

 The aim is to sort asking the least amount of yes/no questions.
 Insertion Sort works for ANY list, so it will work here as well. However, you would

not be making use of the fact that the two lists are pre-sorted for you already.
 You’ll probably be surprised at how you can cut down on your questions if you get

clever!

Think carefully about this problem. You need to do something like Insertion Sort, but you
can be more efficient because the elements you are inserting are not random. They are
nicely ordered. So use that fact to decide at each step which numbers you need to
compare, and, more importantly, which numbers you DON’T need to compare. This is very
important as the aim of the game is to use the smallest number of yes/no questions.

 Merge Sort

This is a very important application of sorting. Modern computers sort large amounts of
data using the procedure you are going to devise next. It’s called Merge Sort, and you will
create it yourself!

The list given to you is random. You know Insertion Sort will do the trick, and so you’re
tempted to try that. However, there is another approach which looks completely non-
intuitive, weird and gibberish, but will end up working out much better than Insertion
Sort. Consider the following points:

 You’ve already seen how you can merge two sorted lists into one sorted list.
 Each number by itself is a sorted list of size 1.
 Try merging large lists together. See if it helps, and what happens if you do. In

Insertion Sort, all you were doing was doing Two-List merge in which one of the
lists was always of size 1. Try changing that, and see how things shape up.

 Fun with Sorting Page 19 of 25
Developed by IEEE as part of TryEngineering

www.tryengineering.org

 Fun with Sorting

S t u d e n t W o r k s h e e t :
S e s s i o n 1 – I n s e r t i o n S o r t

This is a group exercise. Before starting, please form a group of 3-5 students.

 Single Insertion

Draw up 8 cards, each with a different number. Have one student in your group be the
controller, and the others should play along. Only the controller is allowed to see the
numbers.

The controller should set up the cards for Single Insertion, and the others should play to
sort the list. Do this at least 5 times, and fill up the table below.

Round Number of yes/no
questions asked

What was the out-
of-place number?

1

2

3

4

5

Based on the information you entered above, answer the following questions:

1. What is the average number of questions asked in one round?

2. Assume that you were to fill up the table above for 5000 Single Insertions. What do

you think would be the largest possible value in the second column (The number of
yes/no questions asked)?

3. Assume that you were working with a list of 10 numbers instead of 8. What would
be your answer to Question 2 in that case?

 Fun with Sorting Page 20 of 25
Developed by IEEE as part of TryEngineering

www.tryengineering.org

4. Can you now relate the size of the list to the number of questions asked in the

worst case? Give a very brief answer about how you think the size of the list and
the questions asked in the worst case (Remember, the fewer the number of
questions, the better. So when we say “worst case”, we mean the largest possible
number of questions asked)

__

__

__

__

 Insertion Sort

Now, with those same cards, play the Insertion Sort game. Remember to start off with a
completely random list.

Do Insertion Sort at least 5 times, and fill out the table below. The controller should keep
a record of the third column before starting the sorting, and reveal it after the list has
been sorted.

Round

Number
of yes/no
questions

asked

What was the starting
list?

1

2

3

4

5

Based on the information you entered above, answer the following questions:

1. What is the average number of questions asked in one round?

 Fun with Sorting Page 21 of 25
Developed by IEEE as part of TryEngineering

www.tryengineering.org

2. You must have realized that Insertion Sort is just a series of Single Insertions. Give

a very brief answer about how you would relate the number of Single Insertions
with the size of the list to be sorted.

__

__

__

__

3. Remember your answer to Question 2 from the Single Insertion exercise. Use that
answer to calculate the number of questions you would need to ask in Insertion
Sort in the “worst case”. Show your steps.

Final Answer: __________________

4. Go head-to-head with another group in a sorting match to see who can sort a
randomized list faster. There will be one controller from each team, in the interest
of fairness. The game rules should be strictly followed, but you may use any
procedure you want.

Number of questions you asked: _______________________

Number of questions your opponent asked: _______________________

Did you win? _______________________

 Fun with Sorting Page 22 of 25
Developed by IEEE as part of TryEngineering

www.tryengineering.org

 Fun with Sorting

S t u d e n t W o r k s h e e t :
S e s s i o n 2 – M e r g e S o r t

This is a group exercise. Before starting, please form a group of 3-5 students.

 Two-List Merge

Draw up 8 cards, each with a different number. Have one student in your group be the
controller, and the others should play along. Only the controller is allowed to see the
numbers.

The controller should set up the cards for Two-list Merge, and the others should play to
sort the list. Do this at least 5 times, and fill up the table below.

Round Number of yes/no
questions asked

What was the
starting list?

1

2

3

4

5

Based on the information you entered above, answer the following questions:

1. What is the average number of questions asked in one round?

2. Assume that you were to fill up the table above for 5000 Two-list Merges. What do

you think would be the largest possible value in the second column (The number of
yes/no questions asked)?

3. Assume that you were working with a list of 10 numbers instead of 8. What would
be your answer to Question 2 in that case?

 Fun with Sorting Page 23 of 25
Developed by IEEE as part of TryEngineering

www.tryengineering.org

4. Now go back and have a look at the answers you gave for the exercise on Single

Insertion. What similarities do you see? What differences? How do the numbers
vary? Do they vary a little, or do they vary a lot? Write down your thoughts on this.

__

__

__

__

__

__

__

__

__

 Merge Sort

Now, with those same cards, play the Merge Sort game. Remember to start off with a
completely random list.

Do Merge Sort at least 5 times, and fill out the table below. The controller should keep a
record of the third column before starting the sorting, and reveal it after the list has been
sorted.

Round

Number
of yes/no
questions

asked

What was the starting
list?

1

2

3

4

5

 Fun with Sorting Page 24 of 25
Developed by IEEE as part of TryEngineering

www.tryengineering.org

Based on the information you entered above, answer the following questions:

1. What is the average number of questions asked in one round?

2. You must have realized that Merge Sort is just a series of Two-list Merges. How

many Two-list Merges did you do to Merge Sort the list of 8 numbers?

3. Remember your answer to Question 2 from the Two-list Merge exercise. Use that
answer to calculate the number of questions you would need to ask in Merge Sort in
the “worst case”. Show your steps.

Final Answer: __________________

4. Go head-to-head with another group in a sorting match to see who can sort a
randomized list faster. There will be one controller from each team, in the interest
of fairness. The game rules should be strictly followed, but you may use any
procedure you want.

Number of questions you asked: _______________________

Number of questions your opponent asked: _______________________

Did you win? _______________________

 Fun with Sorting Page 25 of 25
Developed by IEEE as part of TryEngineering

www.tryengineering.org

Fun with Sorting

T e a c h e r R e s o u r c e :
A l i g n m e n t t o C u r r i c u l u m F r a m e w o r k s

Note: Lesson plans in this series are aligned to one or more of the following sets of standards:
• U.S. Science Education Standards (http://www.nap.edu/catalog.php?record_id=4962)
• U.S. Next Generation Science Standards (http://www.nextgenscience.org/)
• International Technology Education Association's Standards for Technological Literacy

(http://www.iteea.org/TAA/PDFs/xstnd.pdf)
• U.S. National Council of Teachers of Mathematics' Principles and Standards for School

Mathematics (http://www.nctm.org/standards/content.aspx?id=16909)
• U.S. Common Core State Standards for Mathematics (http://www.corestandards.org/Math)
• Computer Science Teachers Association K-12 Computer Science Standards

(http://csta.acm.org/Curriculum/sub/K12Standards.html)

 Principles and Standards for School Mathematics
 As a result of activities, all students should develop

Problem Solving Standard
 Apply and adapt a variety of appropriate strategies to solve problems.
 Solve problems that arise in mathematics and in other contexts.

CSTA K-12 Computer Science Standards Grades 3-6 (ages 8-11)
5.1 Level 1: Computer Science and Me (L1)
 Computational Thinking: (CT)

2. Develop a simple understanding of an algorithm (e.g., search, sequence of
events, or sorting) using computer-free exercises.
4. Describe how a simulation can be used to solve a problem.

CSTA K-12 Computer Science Standards Grades 6-9 (ages 11-14)
5. 2 Level 2: Computer Science and Community (L2)
 Computational Thinking: (CT)

3. Define an algorithm as a sequence of instructions that can be processed
by a computer.
4. Evaluate ways that different algorithms may be used to solve the same
problem.
5. Act out searching and sorting algorithms.
8. Use visual representations of problem states, structures, and data (e.g.,
graphs, charts, network diagrams, flowcharts).

 Standards for Technological Literacy – All Ages
 The Nature of Technology

 Standard 2: Students will develop an understanding of the core concepts of
technology.

http://www.nap.edu/catalog.php?record_id=4962
http://www.nextgenscience.org/
http://www.iteea.org/TAA/PDFs/xstnd.pdf
http://www.nctm.org/standards/content.aspx?id=16909
http://www.corestandards.org/Math
http://csta.acm.org/Curriculum/sub/K12Standards.html

