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O N MAY 24, 2000, THE CLAY MATHEMATICS
Institute (www.claymath.org) announced
its seven Millennium Prize Problems. The

Institute will award $1,000,000 for the solution to
any of these problems. Each problem is significant
in its own area of mathematics and has resisted
solution for some time. 

In an era when the average NBA player’s salary
is $4.5 million and when someone with a broad
knowledge of trivia can win a million dollars on a
televised game show, this million-dollar prize in
mathematics gives mathematics teachers a unique
opportunity to devise and use interesting activities.
Unfortunately, most of the Millennium Prize Prob-
lems are difficult for nonmathematicians to under-
stand and are completely incomprehensible to chil-
dren. However, one problem is accessible to middle
and high school students. This article provides
guided lessons that will help students understand,
although probably not solve, the Millennium Prize
Problem known as P versus NP.

P VERSUS NP 
The P versus NP problem arises in computer science
in the study of algorithms for decision problems,
which are problems that demand a yes or no answer.
The following are some sample decision problems:

∑ Can we drive from Chicago to Louisville using
only interstate highways? 

∑ Is this C++ program free of syntax errors? 
∑ Will we have colonies on Mars in twenty-five years? 
∑ Given a finite set of words and an n ¥ n matrix of

black and white squares, can a crossword puzzle
be made using all the words?

Certain decision problems can be solved with a
computer algorithm. For example, when a C++
compiler rejects code, it has made a decision that
the code is not grammatical C++. A computer
equipped with a representation of the interstate
highway system could answer a question about get-
ting to Louisville from Chicago on interstate high-
ways. However, no computer algorithm can answer
a question about future colonies on Mars.

Computer algorithms for decision problems are
frequently assessed and compared with respect to
the amount of time they take to find an answer.
The time is usually expressed as a function of the
size of the input. For example, suppose that the
decision problem is “Here is a list of numbers. Is
the largest number in this list greater than 2001?”
One possible computer algorithm is the following:

Start with the first number in the list.
1. Compare the number to 2001.
2. If the number is less than or equal to 2001, go to

step 3; otherwise, answer yes and stop.
3. If the list includes another number to examine,

go to step 1; otherwise, answer no and stop.

If none of the numbers in the list is greater than
2001, the algorithm looks at every number in the
list. If a time t seconds is needed to compare a num-
ber to 2001 and if n numbers are in the list, the
algorithm will run for at most nt seconds before it
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stops. The algorithm’s time complexity is a linear
function of the size of its input. The decision problem
is then solvable by the algorithm in linear time.

If a decision problem is solvable by some algorithm
in polynomial time and solvable by another algo-
rithm in exponential time, then the polynomial-time
algorithm is considered superior to the exponential-
time algorithm because of what is called the combi-
natorial explosion. Table 1 shows quite dramatical-
ly this explosion for an algorithm whose time is n2

nanoseconds (polynomial time) versus one whose
time is 2n nanoseconds (exponential time).

The student explorations in this article deal pri-
marily with this combinatorial explosion. The goal
is to give students an appreciation for the signifi-
cant differences between polynomial and nonpoly-
nomial time. If a decision problem can be solved by
a polynomial-time algorithm, then that decision
problem is a member of the class P.

Some very famous decision problems have yet to be
solved with a polynomial-time algorithm. We do not
know whether they can be solved with a polynomial-
time algorithm that nobody has yet found or whether
finding one is impossible. The most famous of these
problems is the Hamiltonian circuit problem (HCP):

Given a road map, does a driving tour exist that
starts and ends at the same city and visits every
other city on the map exactly one time? 

The activity sheets examine this problem. The time
complexity is determined by counting the number of
possible orderings of the cities visited. No polynomial-
time algorithm for solving the HCP is known. How-
ever, if someone gave us a route through the map,
we could check to see whether every city was visited
exactly once—and we could check it rather quickly.

The class of decision problems for which potential
answers can be checked by some algorithm in a num-
ber of steps that is a polynomial function of the size
of the input is called the class NP. Some NP problems
have the property that all other NP problems can
be converted into them. These conversions are all
achieved by algorithms in a number of steps that is
a polynomial function of the size of the input. These
problems are called NP-complete and in a way, they
represent all of NP. Hundreds of these NP-complete
problems exist (see Garey and Johnson [1979]). If
any NP-complete problem can be shown to be in P,
then all NP problems are in P. To solve the NP
problem, we would have to convert it to this NP-
complete problem and then solve the NP-complete
problem. The conversion algorithm and the solution
are achieved in a number of steps that is a polyno-
mial function of the input.

If anyone proves that an NP-complete problem is,
in fact, in P, the implications for computer science
would be tremendous. Thousands of extremely diffi-
cult decision problems would gain polynomial-time

algorithms. Every corner of the computer science
community would be affected.

However, most computer scientists and mathe-
maticians do not believe that any of the NP-complete
problems are actually P problems, but nobody has
been able to prove this belief one way or another.
This proof is the P versus NP problem that has a
$1,000,000 bounty on its head.

THE ACTIVITIES
The activities take the student on a tour of compu-
tational complexity that leads to the statement of
the P versus NP problem. I have used the activities
with individual students and with teams of three.
The material is accessible to high school students,
as well as middle school students who have taken
some algebra.

All the lessons discuss people who inhabit a
country ruled by a fictional queen who commissions
annual birthday gifts for her daughter. The time
required to make the gifts is a function of the age of
the daughter. Each gift is designed to express a dif-
ferent function (quadratic, cubic, and exponential).
In activity 1, the student investigates the time com-
plexity of the three gifts and discovers how expo-
nential functions can greatly surpass polynomial
functions. Activity 2 looks at space complexity for
the same gifts. Activity 2 is not needed before doing
activity 3. My students wanted to look at the space
needed to make the gifts, so I added some investi-
gations that I based on their interests. Activity 3
adds the birthday tour (a variation of HCP) to the
lessons and describes the P versus NP problem.

SOLUTIONS
Sheet 1
1. See table 2.

2. m = n2.

If anyone
proves that
an NP-
complete
problem 
is in P, the
implications
for computer
science
would be
tremendous

TABLE 1
Illustration of the Combinatorial Explosion

Input size n = 10 n = 100
time = n2 0.0000001 seconds 0.00001 seconds
time = 2n 0.000001024 seconds 4.019 ¥ 1013 years

TABLE 2
Sheet 1, Question 1

Theta’s Age (Years) Number of Tiles in the Square Mosaic 
1 1
2 4
3 9
4 16
5 25
6 36

10 100
15 225
16 256
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Sheet 2
11.

The window is x-axis [1, 16], y-axis [0, 2750].
Although the graph shows a continuous func-
tion, the graphs are discrete functions, since
the gifts were done only for the birthdays.

12. When Theta was ten years old, the bead
stringer worked the shortest time. When she
was sixteen, the tiler worked the shortest time.

13. For n = 1 to 5, the tiler’s time was higher than the
others, the bead stringer’s time was lower than
the others, and the baker’s time was higher than
the bead stringer’s time but lower than the tiler’s
time. For n = 6, the mosaic and the cake require
the same amount of time, which is higher than
the amount of time required by the bead stringer.
For n = 7 to 13, the baker’s time was higher than
the others, the bead stringer’s time was lower
than the other two, and the tiler’s time was high-
er than the bead stringer’s time but lower than
the baker’s time. For n = 14 to 15, the baker’s time
was higher than the others, the tiler’s time was
lower than the other two, and the bead stringer’s
time was higher than the tiler’s time but lower
than the baker’s time. For n > 15, the bead
stringer’s time was higher than the others, the
tiler’s time was lower than the other two, and
the baker’s time was higher than the tiler’s time
but lower than the bead stringer’s time.

14. See table 6.
TABLE 6

Sheet 2, Question 4
Theta’s Area of Volume of Length of Necklace

Age Mosaic Birthday Cake (Beads Only) 

1 1 sq. in. 8 cu. in. 1/4 in.
2 4 sq. in. 64 cu. in. 1/2 in.
3 9 sq. in. 216 cu. in. 1 in.
4 16 sq. in. 512 cu. in. 2 in.
5 25 sq. in. 1,000 cu. in. 4 in.
6 36 sq. in. 1,728 cu. in. 8 in.

10 100 sq. in. 8,000 cu. in. 128 in.
15 225 sq. in. 27,000 cu. in. 4,096 in.
16 256 sq. in. 32,768 cu. in. 8,192 in.

1n n2 sq. in. 8n3 cu. in. 4 • 2n–1 in.

5. On her twentieth birthday, it will be 131,072
inches long.

6. It is 10,922 2/3 feet, or 2 34/495 miles.

7. The bead stringer could combine all the neck-
laces made in previous years.

The 
activities 

take the 
student on 

a tour of 
computational

complexity

TABLE 5
Sheet 1, Question 7

Theta’s Age Time to Time to Time to 
(Years) Make Mosaic Assemble Cake Make Necklace 

1 3 min. 30 sec. 5 sec.
2 12 min. 4 min. 10 sec.
3 27 min. 13.5 min. 20 sec.
4 48 min. 32 min. 40 sec.
5 75 min. = 1 hr., 15 min. 1 hr., 2.5 min. 1 min., 20 sec.
6 108 min. = 1 hr., 48 min. 1 hr., 48 min. 2 min., 40 sec.

10 300 min. = 5 hrs. 8 hrs., 20 min. 42 min., 40 sec.
15 11 hrs., 15 min. 28 hrs., 7.5 min. 22 hrs., 45 min., 20 sec.
16 12 hrs., 48 min. 34 hrs., 8 min. 45 hrs., 30 min., 40 sec.

13. See table 3.

14. c = n3.

15. See table 4.

16. b = 2n–1.

17. See table 5.

18. They all increase, but the bead stringer’s time
increases much faster.

19. Mosaic: t = 3 ∑ n2

Cake: t = 0.5 ∑ n3

s 1Necklace: t =
60

∑ 2n–1 =
12

∑ 2n–1

10. Because stringing time eventually becomes
longer than tiling or baking time, the royal
baker probably would not want to switch with
the royal bead stringer.

TABLE 3
Sheet 1, Question 3

Theta’s Age Number of Cubecakes 
(Years) in the Birthday Cake 

1 1
2 8
3 27
4 64
5 125
6 216

10 1,000
15 3,375
16 4,096

TABLE 4
Sheet 1, Question 5

Theta’s Age (Years) Number of Beads in the Necklace 
1 1
2 2
3 4
4 8
5 16
6 32

10 512
15 16,384
16 32,768
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Sheet 3
1. Palace-Cyr-Abiville-Belloz-Didgery-Palace

Palace-Cyr-Didgery-Belloz-Abiville-Palace
Palace-Didgery-Belloz-Abiville-Cyr-Palace
Palace-Abiville-Belloz-Didgery-Cyr-Palace

2. If Pa represents the palace, the first letter of
each town represents the town, and a road is
denoted by the towns it connects, three possible
tours are the following: PaACEDBGJKFHLIPa,
PaILHFKJGBDECAPa, PaECABDGJKFHLIPa

3. None. We must use exactly two of the three roads
entering each town—one road to enter the town
and one road to leave the town. 

The tour must include two of the roads PaA,
PaE, and PaI. If PaA is not included, then AK and
AG must be. Only one of GP and GN is therefore
included. If GN is used, then we must have EP
and PM, since two roads must go through each
town. We then must use ON and OK. Thus, IN is
excluded, so we must use IM and exclude MK.
The result is two unconnected loops: PaEPMIPa
and AKONGA. So we go back and exclude GN and
include GP. We must then have NO and NI. IM is
then excluded, and MP and MK must be included.
Thus, OK is excluded and EO is required. Again
we have separate loops: PaINOEPa and AGPMKA.
Excluding PaE or PaI initially leads to similar
results.

8. See table 8.
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TABLE 8
Sheet 3, Question 8

Number of Number of Time to Calculate Time to Calculate All
Cities Potential Tours Each Tour Potential Tours

5 5! = 120 0.000000005 sec. 0.0000006 sec.
10 10! = 3,628,800 0.00000001 sec. 0.036288 sec.
15 15! = 0.000000015 sec. 19,615.11552 sec. 

= 5 hrs., 26 min., 55 sec.
20 20! = 2.4329 ¥ 1018 0.00000002 sec. 1,543 years
30 30! = 0.00000003 sec. 2.523 ¥ 1017 years
n n! = n(10– 9) sec. n(10– 9)n! sec.

(Worksheets begin on page 30)
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4. PaZWAPa, PaZAWPa, PaAWZPa, PaAZWPa
PaWZAPa, and PaWAZPa

5. 5! = 120

6. See table 7.
TABLE 7

Sheet 3, Question 7
Number of Cities Number of Potential Tours

3 3! = 6
5 5! = 120

10 10! = 3,628,800
12 12! = 479,001,600
20 20! = 2.4329 ¥ 1018

n n!



ACTIVITY 1: TIME EXPLOSIONS SHEET 1A

The queen of the wonderful land of Complexis was ecstatic about the birth of her daughter, Theta.
She decided to plan annual birthday celebrations for her. The queen called in her three royal
artists and gave them each an assignment to be fulfilled every year in time for Theta’s birthday.

From the Mathematics Teacher, January 2003

The queen told the royal tiler to make a square mosaic of square iridescent tiles each year. The
number of tiles on each side of the mosaic must equal the age of Theta on her birthday. 

11. Complete the table for the number of tiles in the mosaic.

Theta’s Age (Years) Number of Tiles in the Square Mosaic

1 1

2 4

3 9

4

5

6

10

15

16

12. Write a formula for the number of tiles in the mosaic on Theta’s nth birthday. Let m represent
the number of tiles in the mosaic on Theta’s nth birthday. 



ACTIVITY 1: TIME EXPLOSIONS—Continued SHEET 1B

The queen told the royal baker to make a large cake in the shape of a cube. She wanted him to
build the cake from small cube-shaped cupcakes that he calls cubecakes. The number of cube-
cakes along the side of the birthday cake must equal the age of Theta on her birthday.

13. Complete the table for number of cubecakes in the birthday cake.

Theta’s Age (Years) Number of Cubecakes in the Birthday Cake
1 1
2 8
3 27
4
5
6

10
15
16

14. Write a formula for the number of cubecakes in the birthday cake on Theta’s nth birthday. Let c
represent the number of cubecakes used to make the birthday cake on Theta’s nth birthday. 

Finally, the queen instructed the royal bead stringer to make a necklace of gold beads for Theta.
On Theta’s first birthday, the necklace would have one gold bead. On her second birthday, the
number of beads would double to two beads; and it would continue to double for each birthday
thereafter.

15. Complete the table for number of gold beads in the necklace.

Theta’s Age (Years) Number of Beads in the Necklace
1 1
2 2
3 4
4
5
6

10
15
16

16. Write a formula for the number of gold beads in the necklace on Theta’s n th birthday. Let b
represent the number of gold beads used to make the necklace for Theta’s n th birthday.
(Remember that 20 = 1.)  
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ACTIVITY 1: TIME EXPLOSIONS—Continued SHEET 1C

Each of the royal artists estimated the amount of time that he or she would need to assemble the
gifts for Theta. Assuming that they had all the materials available ahead of time, the times were as
follows:

• The royal tiler could lay one tile in the mosaic in three minutes.
• The royal baker could put one cubecake into the birthday cake in thirty seconds.
• The royal bead stringer could string one gold bead on the necklace in five seconds.

17. Complete the table for the amount of time that each royal artist would need to construct the
gift for Theta.

Theta’s Age (Years) Time to Make Mosaic Time to Assemble Cake Time to Make Necklace

1 3 min. 30 sec. 5 sec.

2 12 min. 4 min. 10 sec.

3 27 min. 13.5 min. 20 sec.

4 48 min. 32 min. 40 sec. 

5

6

10

15

16

18. What do you notice about the time that each artist needs to complete his or her task?

19. Write a formula for the assembly time t, in minutes, of each gift on Theta’s n th birthday.

Mosaic: t = _________________________________________________________________________
Cake: t = __________________________________________________________________________
Necklace: t = _______________________________________________________________________

After Theta’s seventh birthday, the royal baker and the royal tiler complained to the queen that their
work required more than two hours, whereas the royal bead stringer needed only five minutes.
They did not think that it was fair. The royal bead stringer, however, just chuckled about it.

The queen, being sympathetic, said that either the royal tiler or the royal baker could switch jobs
with the royal bead stringer, since they were all talented and could do one another’s work very
well. However, if they switched, the change would be permanent. 

10. If you were the royal baker, would you switch with the royal bead stringer? Explain. Before
you answer, take a look at the times needed to make the birthday gifts when Theta is sixteen
years old.

From the Mathematics Teacher, January 2003



ACTIVITY 2: TIME AND SPACE COMPLEXITY SHEET 2A

In the last activity, you saw that for the first few years, the amount of time needed to string the gold
beads was much less than that required for making the mosaic or the cake. However, the bead-
stringing time eventually became considerably longer than the tiling or baking time. The following
table shows some of the times again, along with the formulas for computing them:

Theta’s Age Tiling Time = 3n2 Cake Time = 0.5n3 Beading Time =
(n) (Minutes) (Minutes) 5�60� • 2n–1 (Minutes)

1 3 min. 30 sec. 5 sec.

2 12 min. 4 min., 30 sec. 10 sec.

5 1 hr., 15 min. 1 hr., 12 min., 30 sec. 1 min., 20 sec.

10 5 hr., 15 min. 8 hr., 20 min., 30 sec. 42 min., 40 sec.

13 8 hr., 27 min. 18 hr., 18 min., 30 sec. 5 hr., 41 min., 20 sec. 

15 11 hr., 15 min. 28 hr., 17 min., 30 sec. 22 hr., 45 min., 20 sec.

16 12 hr., 48 min. 34 hr., 18 min., 30 sec. 45 hr., 30 min., 40 sec.

11. Using a graphing calculator or graphing software, draw the graphs of t = 3n2, t = 0.5n3, and 
t = (5/60) • 2n–1, for n a positive integer, on the same coordinate system.

12. Who worked the shortest amount of time making a gift when Theta was ten years old? 

When she was sixteen years old? 

13. Using the phrases “higher than” and “lower than,” describe the behavior of the graphs. Be sure
to zoom in and out to obtain a good look at the graphs.
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ACTIVITY 2: TIME AND SPACE COMPLEXITY—Continued SHEET 2B

In constructing Theta’s birthday gifts, the queen’s artists were each carrying out the steps in an
algorithm, a step-by-step procedure to accomplish a specific task. Computer scientists are inter-
ested in the amount of time that is required for an algorithm to be executed. As you have discov-
ered, the time required for an algorithm to be executed depends on the number of steps that make
up the algorithm. The amount of time required for an algorithm to be executed, viewed as a func-
tion of the size of the task, is called the time complexity of the algorithm.

The times that the baker and tiler needed to complete their tasks, t = 3n2 and t = 0.5n3, respec-
tively, were polynomial functions of the number of pieces they needed. Their algorithms can be
performed in polynomial time. The bead stringer’s time,

5t = �̀6̀0� • 2n–1,

is an exponential function of the number of beads needed. The bead stringer can perform his algo-
rithm in exponential time. 

Obviously, exponential-time algorithms can become really time-consuming.
You have received a pretty good view of the time complexity of the birthday-gift algorithms.

Another way of seeing the complexity of algorithms is by looking at the space that they need. In a
computer, space is measured in terms of memory. This activity examines the space needed to
create the birthday gifts for Theta. 

The queen also determined the sizes of the birthday gifts. She commanded that each tile for the
birthday mosaic be one inch square. Each cubecake must have two-inch sides. Each gold bead
must be a sphere one-quarter inch in diameter.

14. Complete the table below.

Theta’s Age Area of Mosaic Volume of Birthday Cake Length of Necklace (Beads Only)

1 1 sq. in. 8 cu. in. 1/4 in.

2 4 sq. in. 64 cu. in. 1/2 in.

3 9 sq. in. 216 cu. in. 1 in.

4

5

6

10

15

16

n

15. The length of the necklace has become much longer by the time that Theta is six years old.
How long will it be on her twentieth birthday? 

16. How long is it in feet? ________________    How about in miles? ________________
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ACTIVITY 2: TIME AND SPACE COMPLEXITY—Continued SHEET 2C

The space requirements for the mosaic and cake are polynomial functions of n, whereas the
space requirement for the necklace is an exponential function of n.

The following chart shows the time and space requirements for gifts on Theta’s thirtieth birthday.

Gift Time Needed to Make Gift Size of Gift

Mosaic 45 hours 6.25 square feet
Cake 9 days, 9 hours 125 cubic feet

Necklace about 85 years about 2118 miles

The thirtieth-birthday necklace would reach from Chicago to San Diego (2105 miles), or from
Boise, Idaho, to Jackson, Mississippi (2115 miles). Not only that, the royal bead stringer would
need to start making the necklace fifty-five years before Theta was born and probably even before
the queen was born!

17. How could the bead stringer shorten the amount of time needed to make this enormous
necklace? 

From the Mathematics Teacher, January 2003



ACTIVITY 3: P VERSUS NP SHEET 3A

After three years, the queen decided to start another birthday tradition for Theta. The queen ran-
domly chose four towns in her kingdom and promised to make a grand tour of them all on Theta’s
fourth birthday. She would start and end the tour at her palace in the capital city. The queen also
commanded that each town be visited only once on any birthday tour. So each year the royal map-
maker and royal driver got together to plan the birthday tour. The map shows the tour that they
prepared for Theta’s fourth birthday.

The royal driver must be sure that a birthday tour is possible. That is, she must find a route that
starts and ends at the palace and that visits each town exactly once.

11. Use the map to find four possible birthday tours. 

The fourth-year birthday tour was fairly easy to plan, but by the time Theta’s twelfth birthday rolled
around, the job became more difficult. The map shows the tour for Theta’s twelfth birthday.

Palace

Cyr

Didgery

Belloz

Abiville

Palace

Gap

Cyr

Didgery

Belloz

Abiville

Elk

Jonquil

Lamphrey

Flopi

Huzzah
Klq
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ACTIVITY 3: P VERSUS NP SHEET 3B

12. Find three possible birthday tours for Theta’s twelfth birthday. 

1

13. Using the map shown, try to find a birthday tour for Theta’s tenth birthday. If you cannot find a
tenth-birthday tour, explain why such a tour cannot be found.

One way to be sure that no birthday tour exists for a particular n is to try every possible route.

14. Suppose that the queen had begun the touring tradition on Theta’s third birthday. Then the tour
only had to visit three cities. Imagine that the queen selected Abiville, Zeplch, and Whazzup.
You can write a possible tour just by listing the places in the order that they would be visited.
Thus, one potential tour would be palace-Zeplch-Whazzup-Abiville-palace. Another would be
palace-Whazzup-Abiville-Zelpch-palace. List the six possible tours that could be made.
Remember that a tour must begin and end at the palace.

How did you know that the number of potential tours was six? Each tour begins at the palace and
ends at the palace, so you only need to find the number of different arrangements of the three
towns in the middle. Three choices are possible for the first town in the tour; two choices are pos-
sible for the second, since the first has already been picked; and only one choice exists for the
third. Thus, the number of potential tours is 3 ¥ 2 ¥ 1, or six.

15. How many different potential tours exist for five cities? ___________________________________

To avoid writing long patterned products like 5 ¥ 4 ¥ 3 ¥ 2 ¥ 1, write instead 5!, which is pro-
nounced as “five factorial.” Mathematicians think that 16! is easier to write and read than 

16 ¥ 15 ¥ 14 ¥ 13 ¥ 12 ¥ 11 ¥ 10 ¥ 9 ¥ 8 ¥ 7 ¥ 6 ¥ 5 ¥ 4 ¥ 3 ¥ 2 ¥ 1. 

Palace
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Abiville
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Plough
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ACTIVITY 3: P VERSUS NP—Continued SHEET 3C

16. Complete the table.

Number of Cities Number of Potential Tours

3 3! = 6

5 5! = 120

10 10! = 3,628,800

12

20

n

Some of the potential tours are impossible if no road connects the towns; but at least when you
have checked them all and have not found a tour, you know that no tour is possible. 

The royal driver has a computer. She can put a map of Complexis and the towns that were
chosen into the computer and ask the computer to look for tours. Her computer is fast enough to
check any possible tour at a speed of one nanosecond (one billionth of a second) per town. 

For the tenth-birthday map, the royal driver’s computer examined all 3,628,800 potential tours
and found none that fit the queen’s requirements. This calculation took only 10 ¥ 10–9 = 10–8 sec-
onds per tour, or 0.036288 seconds.

17. Complete the table.

Number of Number of Time to Calculate Time to Calculate 
Cities Potential Tours Each Tour All Potential Tours

5 5! 0.000000005 sec. 0.0000006 sec.

10 10! 0.00000001 sec. 0.036288 sec.

15

20

30

n n! n(10–9) sec. n(10–9)n! sec.

On Theta’s twentieth birthday, twenty cities are in the tour. The royal driver’s computer takes only
twenty nanoseconds to check a tour. Yet, the computer needs about 48,658,040,160 seconds, or
approximately 1542 years to check all the potential tours. If no tour was possible, the royal driver
would have to wait 1542 years for her computer to finish checking every possibility before she
would know for sure. Theta would be well beyond twenty years old by then. 

So the problem of deciding whether a birthday tour is possible is considerably more time-
consuming than the process of checking whether a specific sequence of cities can be used for a
birthday tour.

From the Mathematics Teacher, January 2003



P VERSUS NP—CONCLUSION SHEET 3D

Some problems, like checking a birthday tour, or algorithms, like making the birthday cake, can
be solved or finished in times that are polynomial functions of the size of their input. Checking the
nth birthday tour only took 10–9n seconds, and assembling the n th birthday cake took 0.5n3 min-
utes; 10–9n is a first-degree polynomial (linear) function of n, and 0.5n3 is a third-degree poly-
nomial function of n. 

Other problems, like searching all the potential birthday tours or making the gold necklace,
require times that are not polynomial functions of the size of their input. Making the nth gold neck-
lace took (5/60)2n–1 minutes (exponential time), and the complete search for a birthday tour took a
maximum of 10–9n (n!) seconds (factorial time). 

Problems that can be solved in a time that is a polynomial function of the size of their inputs are
called P problems. These problems usually can be solved within a reasonable amount of time.
Checking a potential birthday tour is a P problem.

Problems that have solutions that are not P problems are called intractable because the time
necessary to solve them quickly becomes enormous—often measured in millennia. You do not
have the time to wait around for these solutions. Searching all routes for a birthday tour is
intractable because finding all solutions would take millennia for n greater than 20. 

But even though finding a birthday tour may not be a P problem, checking an answer to the
birthday problem is a P problem. Problems whose answers can be checked in polynomial time but
have no known solution in polynomial time are called NP problems. 

The birthday-tour problem is also a special kind of NP problem, called an NP-complete problem.
NP-complete problems have a special relationship to all the other NP problems. If some clever
mathematician or computer scientist finds a polynomial-time solution to the birthday-tour problem
(or any other NP-complete problem), then finding a polynomial-time solution to every NP problem
is possible and therefore all NP problems are actually P problems. 

Most computer scientists and mathematicians think that such a solution will never be found.
They think that NP problems are not P problems, but nobody has been able to prove this possibili-
ty. These problems show up in scheduling delivery-truck routes, backing up files on floppy disks,
assigning students to classes, and making crossword puzzles.

Computer scientists are very interested in finding out once and for all whether every NP problem
is in fact a P problem. This question is known as the P versus NP problem. The answer to the
question is so important that the Clay Mathematics Institute (www.claymath.org) has offered a
$1,000,000 prize to anyone who can answer the question one way or another. Who wants to be a
millionaire?
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