
Lesson 2 - Plotting Shapes (computer grid)

100 200 300 400 → x

Lesson 3 - Drawing in Game Lab

Vocabulary:
● Bug - Part of a program that does not work correctly.

● Debugging - Finding and fixing problems in an algorithm or program.

● Program - An algorithm that has been coded into something that can be run by a

machine.

Introduced Code:

● ellipse(x, y, w, h)

● fill(color)

● rect(x, y, w, h)

https://studio.code.org/docs/ide/gamelab/expressions/ellipse
https://studio.code.org/docs/ide/gamelab/expressions/fill
https://studio.code.org/docs/ide/gamelab/expressions/rect


Examples:

Lesson 4 - Shapes and Randomization

Vocabulary:
● Parameter - Additional information provided as input to a block to customize its

functionality

Introduced Code:

● background(color) → put this at beginning (order matters)

● ellipse(x, y, w, h)

● rect(x, y, w, h)

Examples:

Lesson 5 - Variables

Vocabulary:
● Variable - A label for a piece of information used in a program.

● camelCase - the first letter of the variable is usually lower case, and each new word
starts with a capital letter. This helps you see the words without spaces (spaces are not
allowed in variable names)

New Code:
● var x = ___;

● var x;

Naming Rules:
● No spaces
● Can’t begin with a number
● Spelling counts
● Case-sensitive

https://studio.code.org/docs/ide/gamelab/expressions/background
https://studio.code.org/docs/ide/gamelab/expressions/ellipse
https://studio.code.org/docs/ide/gamelab/expressions/rect
https://studio.code.org/docs/ide/gamelab/expressions/declareAssign_x
https://studio.code.org/docs/ide/gamelab/expressions/declareNoAssign_x


Example:

↖label ↖value

Lesson 6: Random Numbers

Vocabulary:
randomNumber() - used to generate random numbers in your programs. The parameters set the
minimum and maximum value that could be generated. You can use this block anywhere that
you could write a number.

Introduced Code:

randomNumber(min, max); → the bigger the range, the bigger the

movement

Example:

Lesson 7: Sprites

Vocabulary:
● Dot notation - the way that sprites' properties are used in Game Lab, by connecting the

sprite and property with a dot.

● Property - A label for a characteristic of a sprite, such as its location and appearance

● Sprite - A character on the screen with properties that describe its location, movement,

and look.

Introduced Code:

drawSprites()

var sprite = createSprite(x, y)

sprite.setAnimation (label)

Examples: ↙location on the grid (x, y)

https://studio.code.org/docs/ide/gamelab/expressions/randomNumber
https://studio.code.org/docs/ide/gamelab/expressions/drawSprites
https://studio.code.org/docs/ide/gamelab/expressions/createSprite


↖image located in animation tab

Lesson 8: Sprite Properties

Vocabulary:
● Property - A label for a characteristic of a sprite, such as its location and

appearance

Introduced Code:

sprite.rotation - changes across

sprite.scale - changes up and down

sprite.x - rotate/spin

sprite.y - size {less than 1 is smaller, more than 1 is bigger}

sprite.visible - can see/not see

Examples:

Lesson 9: Text

Vocabulary:
● textFont - changes the default font Arial
● textSize - changes the default size, 12 pixels
● textAlign - change where the text is displayed relative to the (x,y) position specified. The

default is that (x,y) is the top left corner of the text.

Note:
Text that does not fit completely within the display area will not be drawn or seen. Use the fourth
and fifth parameters to create a text box to display the text in with automatic line wrapping.

https://studio.code.org/docs/ide/gamelab/expressions/rotation
https://studio.code.org/docs/ide/gamelab/expressions/scale
https://studio.code.org/docs/ide/gamelab/expressions/x
https://studio.code.org/docs/ide/gamelab/expressions/y


Introduced Code:

textFont() textSize() textAlign()

Examples:

Lesson 10: Mini-Project - Captioned Scenes

Criteria:
background(color)
At least 2 sprites
Must use the rect block
Must use the ellipse block
Needs text - should tell a joke
Use textSize

Shapes: Color and Style:

background(color) fill(‘color’)

rect(x, y, width, height) noFill()

ellipse(x, y, width, height) stroke(‘color’)
border color

text (string, x, y, width, height) noStroke()

textSize(pixels)
font size

strokeWeight()
thickness

Lesson 11: The Draw Loop

Vocabulary:
● Animation - a series of images that create the illusion of motion by being shown rapidly

one after the other
● Frame - a single image within an animation
● Frame Rate - the rate at which frames in an animation are shown, typically measured in

frames per second



New Code:

World.frameRate function draw() {}

Examples:

Lesson 12: Sprite Movement

Vocabulary:

Counter pattern - used to make an image fly
across the screen, to count down a timer, or to keep track of clicks. It is used with a variable x to
count up by one.

Note:
Every time this code is run, it will take the current value of x, add 1, and save that as the new
value of x. While this particular instance of the Counter Pattern uses addition, you could also
use subtraction to count down.

Introduced Code:

Example:

https://studio.code.org/docs/ide/gamelab/expressions/World.frameRate
https://studio.code.org/docs/ide/gamelab/expressions/draw
https://studio.code.org/docs/gamelab/x/


Lesson 13: Mini-Project - Animation

Criteria:
Background
Multiple Sprites with multiple properties
in the draw loop
Text
Sprite Movement
Multiple variables and values are updated
during the program.
At least one variable or property uses the
counter pattern



Lesson 14: Conditionals

Vocabulary:
● Boolean Expression - in programming, an expression that evaluates to True or False.

● Condition - Something a program checks to see whether it is true before deciding to

take an action.

● Conditionals - Statements that only run when certain conditions are true.

Introduced Code:

___ != ___ ___ < ___ ___ <= ___ ___ == ___ ___ > ___ ___ >= ___

if (condition) { statement }

Example:
↙creates sprite

Lesson 15: Keyboard Input

Vocabulary:

● keyDown - detect whether a specific keys are being pressed down.

New Code:

https://studio.code.org/docs/ide/gamelab/expressions/inequalityOperator
https://studio.code.org/docs/ide/gamelab/expressions/lessThanOperator
https://studio.code.org/docs/ide/gamelab/expressions/lessThanOrEqualOperator
https://studio.code.org/docs/ide/gamelab/expressions/equalityOperator
https://studio.code.org/docs/ide/gamelab/expressions/greaterThanOperator
https://studio.code.org/docs/ide/gamelab/expressions/greaterThanOrEqualOperator
https://studio.code.org/docs/ide/gamelab/expressions/ifBlock


if (condition) { statement1 } else { statement2 }

keyDown(code) - checks if the key specified is pressed.

keyWentDown(code) - generates a single true value when the key is pressed down, no

matter how long a key is pressed.

keyWentUp(code) - checks if the key specified was released.

mouseDown(button) - checks if the mouse button specified is pressed.

Example:

Lesson 16: Mouse Input

Vocabulary:
● mouseDown - checks if the mouse button specified is pressed.

New Code:

Example:
↙sprite

https://studio.code.org/docs/ide/gamelab/expressions/ifElseBlock
https://studio.code.org/docs/ide/gamelab/expressions/keyDown
https://studio.code.org/docs/ide/gamelab/expressions/keyWentDown
https://studio.code.org/docs/ide/gamelab/expressions/keyWentUp
https://studio.code.org/docs/ide/gamelab/expressions/mouseDown


balloon.y = balloon.y - 1 → sprite moves up
balloon.y = balloon.y + 1 → sprite moves down

Lesson 17: Project - Interactive Card

Criteria:
Background
Draw Loop
At least 1 random number
Multiple sprites and set animation
Multiple properties updated in the draw loop
Multiple use input using key presses and mouse
movements
If block inside the draw loop
Boolean comparison block (eg., <, >, ==)
At least 1 variable or property uses the counter
pattern


