AP Computer Science Principles School year 2022/2023
Michael Smith

	Semester 1

	Unit 1: Digital Information
	A/B Schedule of Classes Duration: 3 weeks

	Lesson Progression
	Key Questions
	Instructional Strategies
	Assessment

	L1: Welcome to CSP
L2: Representing Information
L3: Circle Square Patterns
L4: Binary Numbers
L5: Overflow and Routing
L6: Representing Text
L7: Black and White Images
L8: Color Images
L9: Lossless Compression
L10: Lossy Compression
L11: Intellectual Property
L12: Project Digital Information Dilemmas
L13: Project Digital Information Dilemmas
L14: Unit Assessment

	· Are the ways in which digital information is encoded more laws of nature or man-made?
· What kinds of limitations does the binary encoding of information impose on what can be represented inside a computer?
· How accurately can human experience and perception be captured or reflected in digital information?

	· Journaling
· Peer Feedback
· Classroom Discussions
· Think-Pair-Share
· Pair Programming
· Debugging
· Unplugged/Plugged Activities
	Formal:
· PA = Performance Assessment from Code.org online widget
· SA = Summative Chapter/Unit Assessment
· O: Observation

Informal:
· HW: Hands-on work from scholars
· IO: Interactive and non-interactive Observation

Resources:
· Code.org online resources

	APCSP Standards

	2-DA-07
2-IC-20
3A-AP-21
3A-CS-02
3A-DA-09
3A-DA-10
3A-IC-28
3A-IC-24
3B-IC-27
	- Represent data using multiple encoding schemes.
- Compare tradeoffs associated with computing technologies that affect people's everyday activities and career options.
- Evaluate and refine computational artifacts to make them more usable and accessible.
- Compare levels of abstraction and interactions between application software, system software and hardware layers.
- Translate between different bit representations of real-world phenomena, such as characters, numbers, and images.
- Evaluate the tradeoffs in how data elements are organized and where data is stored.
- Explain the beneficial and harmful effects that intellectual property laws can have on innovation.
- Evaluate the ways computing impacts personal, ethical, social, economic, and cultural practices
- Predict how computational innovations that have revolutionized aspects of our culture might evolve.

	Computational Thinking Practices

	· P1 Connecting Computing
· P4 Analyzing Problems & Artifacts

	Semester 1

	Unit 2: Digital Information
	A/B Schedule of Clases Duration: 2 weeks

	Lesson Progression
	Key Questions
	Instructional Strategies
	Assessment

	L1: Welcome to he Internet
L2: Building a Network
L3: Need for Addressing
L4: Routers and Redundancy
L5: Packets
L6: HTTP and DNS
L7: Project Internet Dilemmas
L8: Project Internet Dilemmas
L9 Unit Assessment
	·
	· Journaling
· Peer Feedback
· Classroom Discussions
· Think-Pair-Share
· Pair Programming
· Debugging
· Unplugged/Plugged Activities
	Formal:
· PA = Performance Assessment from Code.org online widget
· SA = Summative Chapter/Unit Assessment
· O: Observation

Informal:
· HW: Hands-on work from scholars
· IO: Interactive and non-interactive Observation

Resources:
· Code.org online resources

	APCSP Standards

	2-NI-04
3A-IC-24
3A-IC-28
3A-IC-30
3B-IC-26
3B-IC-28
3B-NI-03
	- Model the role of protocols in transmitting data across networks and the Internet.
- Evaluate the ways computing impacts personal, ethical, social, economic, and cultural practices.
- Explain the beneficial and harmful effects that intellectual property laws can have on innovation.
- Evaluate the social and economic implications of privacy in the context of safety, law, or ethics.
- Evaluate the impact of equity, access, and influence on the distribution of computing resources in a global society.
- Debate laws and regulations that impact the development and use of software 3A-NI-04 - Evaluate the scalability and reliability of networks, by describing the relationship between routers, switches, servers, topology, and addressing.
- Describe the issues that impact network functionality (e.g., bandwidth, load, delay, topology).
.

	Computational Thinking Practices

	· P2 Creating Computational Artifacts
· P3 Abstracting

	Semester 1

	Unit 3: Intro to APP Design
	A/B Schedule for Classes Duration: 3 weeks

	Lesson Progression
	Key Questions
	Instructional Strategies
	Assessment

	L1: Introduction to APPs
L2: Introduction to Design Mode
L3: Project Designing an APP Part 1
L4: Designing an APP Part 2
L5: The Need for Programming Languages
L6: Intro to Programming
L7: Debugging
L8: Project Designing an App Part 3
L9: Project Designing an APP Part 4
L10 Project Designing an APP Part 5
L11: Unit Assessment

	·
	· Journaling
· Peer Feedback
· Classroom Discussions
· Think-Pair-Share
· Pair Programming
· Debugging
· Unplugged/Plugged Activities
	Formal:
· PA = Performance Assessment from Code.org online widget
· SA = Summative Chapter/Unit Assessment
· O: Observation

Informal:
· HW: Hands-on work from scholars
· IA: Interactive and non-interactive Observation

Resources:
· Code.org online resources

	CTSA Standards

	3A-AP-13
3A-AP-15

3A-AP-16
3A-AP-17

3A-AP-19
3A-AP-21
3A-AP-22
3A-AP-23
3B-AP-14
3A-CS-03
	- Create prototypes that use algorithms to solve computational problems by leveraging prior student knowledge and personal interests.
- Justify the selection of specific control structures when tradeoffs involve implementation, readability, and program performance and explain the benefits and drawbacks of choices made.
- Design and iteratively develop computational artifacts for practical intent, personal expression, or to address a societal issue by using events to initiate instructions.
- Decompose problems into smaller components through systematic analysis, using constructs such as procedures, modules, and/or objects.
- Systematically design and develop programs for broad audiences by incorporating feedback from users.
- Evaluate and refine computational artifacts to make them more usable and accessible.
- Design and develop computational artifacts working in team roles using collaborative tools.
- Document design decisions using text, graphics, presentations, and/or demonstrations in the development of complex programs.
- Construct solutions to problems using student-created components, such as procedures, modules and/or objects.
- Develop guidelines that convey systematic troubleshooting strategies that others can use to identify and fix errors.

	Computational Thinking Practices

	· P1 Connecting Computing
· P3 Abstracting
· P4 Analyzing Problems & Artifacts

	Semester 1

	Unit 4: Variables, Conditions and Functions
	A/B Schedule for Classes Duration: 6 weeks

	Lesson Progression
	Key Questions
	Instructional Strategies
	Assessment

	L1: Variables Explore
L2: Variable Investigate
L3: Variables Practice
L4: Variables Make
L5: Conditionals Explore
L6: Conditionals Investigate
L7: Conditionals Practice
L8: Conditionals Make
L9: Functions Explore / Investigate
L10: Functions Practice
L11: Functions Make
L12: Project Decision Maker APP Part 1
L13: Project Decision Maker APP Part 2
L14: Project Decision Maker APP Part 3
L15: Unit Assessment
	·
	· Journaling
· Peer Feedback
· Classroom Discussions
· Think-Pair-Share
· Pair Programming
· Debugging
· Unplugged/Plugged Activities
	Formal:
· PA = Performance Assessment from Code.org online widget
· SA = Summative Chapter/Unit Assessment
· O: Observation

Informal:
· HW: Hands-on work from scholars
· IO: Interactive and non-interactive Observation

Resources:
· Code.org online resources

	APCSP Standards

	2-AP-10
2-AP-11
2-AP-12
2-AP-19
3A-AP-15

3A-AP-16

3A-AP-17
3B-AP-14
3B-AP-21
3B-AP-23

	- Use flowcharts and/or pseudocode to address complex problems as algorithms.
- Create clearly named variables that represent different data types and perform operations on their values.
- Design and iteratively develop programs that combine control structures, including nested loops and compound conditionals.
- Document programs in order to make them easier to follow, test, and debug.
- Justify the selection of specific control structures when tradeoffs involve implementation, readability, and program performance and explain the benefits and drawbacks of choices made.
- Design and iteratively develop computational artifacts for practical intent, personal expression, or to address a societal issue by using events to initiate instructions.
- Decompose problems into smaller components through systematic analysis, using constructs such as procedures, modules, and/or objects.
- Construct solutions to problems using student-created components, such as procedures, modules and/or objects.
- Develop and use a series of test cases to verify that a program performs according to its design specifications.
- Evaluate key qualities of a program through a process such as a code review

	Computational Thinking Practices

	· P1 Connecting Computing
· P2 Creating Computational Artifacts
· P4 Analyzing Problems & Artifacts

END OF SEMESTER 1

	Semester 2

	Unit 5: Lists, Loops and Traversals
	A/B Schedule for Classes Duration: 4 weeks

	Lesson Progression
	Key Questions
	Instructional Strategies
	Assessment

	L1: Lists Explore
L2: Lists Investigate
L3: Lists Practice
L4: Lists Make
L5: Loops Explore
L6: Loops Investigate
L7: Loops Practice
L8: Loops Make
L9: Traversals Explore
L10: Traversals Investigate
L11: Traversals Practice
L12: Traversals Make
L13: Project Hackathon Part 1
L14: Project Hackathon Part 2
L15: Project Hackathon Part 3
L16: Project Hackathon Part 4
L17: Project hackathon Part 5
L18: Unit Assessment
	·
	· Journaling
· Peer Feedback
· Classroom Discussions
· Think-Pair-Share
· Pair Programming
· Debugging
· Unplugged/Plugged Activities
	Formal:
· PA = Performance Assessment from Code.org online widget
· SA = Summative Chapter/Unit Assessment
· O: Observation

Informal:
· HW: Hands-on work from scholars
· IA: Interactive and non-interactive observation

Resources:
· Code.org online resources

	APCSP Standards

	

	

	Computational Thinking Practices

	· P1 Connecting Computing
· P2 Creating Computational Artifacts
· P3 Abstracting
· P4 Analyzing Problems and Artifacts

	Semester 2

	Unit 6: Algorithms
	A/B Schedule for Classes Duration: 2 weeks

	Lesson Progression
	Key Questions
	Key Concepts and Pedagogy
	Assessment

	L1: Algorithms Solve Problems
L2: Algorithm Efficiency
L3: Unreasonable Time
L4: Limits of Algorithms
L5: Parallel and Distributed Algorithms
L6: Unit Assessment
	·
	· Journaling
· Peer Feedback
· Classroom Discussions
· Think-Pair-Share
· Pair Programming
· Debugging
· Unplugged/Plugged Activities
	Formal:
· PA = Performance Assessment from Code.org online widget
· SA = Summative Chapter/Unit Assessment
· O: Observation

Informal:
· O: Hands-on work from scholars
· O: Interactive and non-interactive observation

Resources:
· Code.org online resources

	APCSP Standards

	

	

	Computational Thinking Practices

	· P1 Connecting Computing
· P2 Creating Computational Artifacts
· P3 Abstracting
· P4 Analyzing Problems and Artifacts

	Semester 2

	Unit 7: Parameters, Returns and Libraries
	A/B Schedule for Classes Duration: 3 weeks

	Lesson Progression
	Key Questions
	Key Concepts and Pedagogy
	Assessment

	L1: Parameters and Returns Explore
L2: Parameters and Return Investigate
L3: Parameters and Return Practice
L4: Parameters and Return Make
L5: Libraries Explore
L6: Libraries Investigate
L7: Libraries Practice
L8: Project Make a Library Part 1
L9: Project Make a Library Part 2
L10: Project Make a Library Part 3
L11: Unit Assessment
	·
	· Journaling
· Peer Feedback
· Classroom Discussions
· Think-Pair-Share
· Pair Programming
· Debugging
· Unplugged/Plugged Activities
	Formal:
· PA = Performance Assessment from Code.org online widget
· SA = Summative Chapter/Unit Assessment
· O: Observation

Informal:
· O: Hands-on work from scholars
· O: Interactive and non-interactive observation

Resources:
· Code.org online resources

	APCSP Standards

	

	

	Computational Thinking Practices

	· P1 Connecting Computing
· P2 Creating Computational Artifacts
· P3 Abstracting
· P4 Analyzing Problems and Artifacts

	Semester 2

	Unit 8: Create PT Prep
	A/B Schedule for Classes Duration: 2 weeks

	Lesson Progression
	Key Questions
	Key Concepts and Pedagogy
	Assessment

	
	·
	· Journaling
· Peer Feedback
· Classroom Discussions
· Think-Pair-Share
· Pair Programming
· Debugging
· Unplugged/Plugged Activities
	Formal:
· PA = Performance Assessment from Code.org online widget
· SA = Summative Chapter/Unit Assessment
· O: Observation

Informal:
· O: Hands-on work from scholars
· O: Interactive and non-interactive observation

Resources:
· Code.org online resources

	APCSP Standards

	

	

	Computational Thinking Practices

	· P1 Connecting Computing
· P2 Creating Computational Artifacts
· P3 Abstracting
· P4 Analyzing Problems and Artifacts

